
Design, Optimization, and

Implementation

of a

Universal FFT Processor

Pinit Kumhom
Jeremy Johnson

and
Prawat Nagvajara

Technical Report DU-MCS-00-01
Department of Computer Science

Drexel University
Philadelphia, PA 19104

September 2000

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2000 2. REPORT TYPE

3. DATES COVERED
 00-09-2000 to 00-09-2000

4. TITLE AND SUBTITLE
Design, Optimization, and Implementation of a Universal FFT Processor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science,Drexel
University,Philadelphia,PA,19104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Design, Optimization, and Implementation of a Universal FFT Processor∗

Pinit Kumhom, Jeremy R. Johnson and Prawat Nagvajara

Drexel University, Philadelphia, PA

Abstract

There exist Fast Fourier transform (FFT) algorithms,
called dimensionless1 FFTs, that work independent of di-
mension. These algorithms can be configured to compute
different dimensional DFTs simply by relabeling the in-
put data and by changing the values of the twiddle factors
occurring in the butterfly operations. This observation
allows us to design an FFT processor, which with minor
reconfiguring, can compute one, two, and three dimen-
sional DFTs. In this paper we design a family of FFT
processors, parameterized by the number of points, the
dimension, the number of processors, and the internal
dataflow, and show how to map different dimensionless
FFTs onto this hardware design. Different dimension-
less FFTs have different dataflows and consequently lead
to different performance characteristics. Using a perfor-
mance model we search for the optimal algorithm for
the family of processors we considered. The resulting
algorithm and corresponding hardware design was im-
plemented using FPGA.

1 Introduction

In many applications, the Fast Fourier Transform (FFT)
presents an intensive computational task due to the
amount of data to be processed. The amount of data (i.e.,
problem size) depends on the number of points and the
dimension of the transform. To this end, engineers and
scientists rely on approaches such as highly-tuned code
for uniprocessors, DSP processors, ASIC, IP cores, and
reconfigurable architecture, to meet the performance re-
quirements with respect to other design constraints such
as physical space. A list of references to these approaches
is provided in [1]. Our study, which is part of the SPIRAL
project [?], focuses on using mathematical properties of
the FFT to help us design a high-performance hardware.

The novelty of our work is threefold. First we base our
processor on the dimensionless FFT [2] which allows a

∗This work was partially supported by DARPA through research
grant DABT63-98-1-0004 administered by the Army Directorate of
Contracting. Additional support was provided by MathStar, Inc.

1Patent #US6003056

single hardware design to compute one, two, and three
dimensional DFTS. Second, we provide a framework for
systematically mapping alternative FFT algorithms onto
parameterized hardware designs. This is obtained by
mapping a mathematical description of the FFT, based
on matrix factorizations [3], to hardware that implements
flow control and generation of the necessary roots of
unity (twiddle factors). Finally, there are many differ-
ent FFT algorithms, each with different dataflow, and
consequently different performance characteristics. Thus
our hardware design becomes on optimization problem
over the space of possible FFT dataflows [4].

We thus propose a universal FFT engine that is pa-
rameterized in terms of the number of points and di-
mension of the transform, and the choice of the algo-
rithm. We consider a distributed architecture comprised
of processing units (with local memory) connected via
an interconnection network. We derived a class of op-
timal FFT dataflow diagrams based on memory-access
cost function. The derivation followed a design flow
that uses a performance model and its simulation to
evaluate the choice of algorithm prior to design of the
hardware [5]. Implementation of the engine for proof of
concept on the WildforceTM [6] reconfigurable (FPGA)
board is performed in two steps, hardware description
language model simulation of the board and the actual
execution of the configured board. We have validated the
actual configured board and are in the process of bench-
marking its performance. Future implementation may
use the ASIC technology for the floating-point (complex
numbers) arithmetical cores and the FPGA technology
for the parameterized flow control units.

In Section 2 we review the dimensionless FFT and the
space of FFT algorithms that we will consider. In Sec-
tion 3 we describe a family of FFT processors and the
mapping of algorithms in Section 2 to this architecture.
In Section 4 we introduce a performance model for the
architecture in Section 3 and find the optimal algorithm
with respect to this model. In Section 5 we describe the
implementation of the design selected in Section 4. De-
tails not provided in this paper can be found in [1].

2 Dimensionless FFT Algorithms

Let X(a1, . . . , at) be a function of t variables, where 0 ≤
ai < ni. The t-dimensional n1 × · · · × nt DFT of X is

X̂(b1, . . . , bt) =
∑

0≤ai<ni

e
2πi
n1

a1b1 · · · e
2πi
nt

atbtX(a1, . . . , at)

The multidimensional DFT can be interpreted as a
matrix-vector product. Let x and x̂ be the vectors of size
N = n1 · · ·nt obtained by ordering the elements of X and
X̂ lexicographically. Then, x̂ = (Fn1⊗· · ·⊗Fnt)x, where
⊗, denotes the tensor (Kronecker) product and Fni is the
ni-point discrete Fourier matrix [3]. FFT algorithms can
be represented by factorizations of this matrix [9, 3].

A dimensionless FFT [2] can compute any multidimen-
sional DFT where n1 · · ·nt = N , for a fixed N . For exam-
ple, a Fourier transform on 16 points can have dimension
equal to 1 (F16), 2 (F2 ⊗ F8, F4 ⊗ F4, and F8 ⊗ F2), 3
(F2 ⊗ F2 ⊗ F4, F2 ⊗ F4 ⊗ F2, and F4 ⊗ F2 ⊗ F4), or 4
(F2 ⊗ F2 ⊗ F2 ⊗ F2). Independent of dimension, these
matrices can be factored into

P4(I8 ⊗F2)T4P3(I8 ⊗F2)T3P2(I8 ⊗F2)T2P1(I8 ⊗F2)T1P0Pd,

where I8 is an identity matrix, the Pi are permutation
matrices and the Ti are diagonal matrices. Only the twid-
dle factors, Ti and the initial permutation Pd change as
the dimension changes. The internal dataflow, given by
the permutations Pi are fixed and hence the factorization
provides a dimensionless FFT.

In particular, if we set P0 = I16 and P1 = P2 = P3 =
P4 = L16

2 , the stride permutation [9] which gathers ele-
ments of a vector of size 16 at stride 2
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

)

,

the algorithm is called the dimensionless Pease algorithm
because it corresponds in the one-dimensional case to an
algorithm described by M. Pease in [8]. Table 1 shows Pd

and the twiddle factors that configure the dimensionless
Pease algorithm to compute a 1-D and a 2-D FFT. The
permutation R2t is the t-bit bit reversal permuation [9].

The set of internal permutations define the dataflow of
the FFT. Figure 1 shows the dataflow of the Pease algo-
rithm (the boxes indicate an F2 with twiddle computa-
tion). Alternative algorithms with different dataflow ex-
ist (see [4] for a classification of possible dataflows). For
example, the permutations P0 = (L8

2⊗I2), P1 = L16
2 (L8

4⊗
I2), P2 = (L8

4 ⊗ I2)L16
2 , P3 = (L8

4 ⊗ I2)L16
2 (L8

4 ⊗ I2),
P4 = L16

2 (L8
2 ⊗ I2), define an algorithm whose dataflow

is shown in Figure 2.
In the following sections we will see that different

dataflows lead to different performance characteristics.
The set of possible dataflows are those sequences of per-
mutations that can be configured to compute the FFT.

That is, those dataflows for which there exist an initial
permutation and a sequence of twiddle factors, such that
the resulting matrix factorization is equal to any compat-
ible multidimensional DFT. To optimize our design, we
search over the space of allowable dataflows for the one
with the best performance.

Table 1: Configuration of the dimensionless Pease algorithm.

To configure for (1-D) F16, set Pd = R16, ω = e
2πi
16 ,

T1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
T2 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, ω4, 1, ω4, 1, ω4, 1, ω4)
T3 = diag(1, 1, 1, 1, 1, ω2, 1, 1, ω2, 1, ω4, 1, ω4, 1, ω6, 1, ω6)
T4 = diag(1, 1, 1, ω, 1, ω2, 1, 1, ω3, 1, ω4, 1, ω5, 1, ω6, 1, ω7)
To configure for (2-D) F4 ⊗ F4, set Pd = R4 ⊗R4, ω = e

2πi
16 ,

T1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
T2 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, ω4, 1, ω4, 1, ω4, 1, ω4)
T3 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
T4 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, ω4, 1, ω4, 1, ω4, 1, ω4)

x̂15

x̂14

x̂13

x̂12

x̂11

x̂10

x̂9

x̂8

x̂7

x̂6

x̂5

x̂4

x̂3

x̂2

x̂1

x̂0

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

aaa
aaa

aaa
aaa

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

Q
QQ

Q
QQ

Q
QQ

Q
QQ

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

@
@@

@
@@

@
@@

@
@@

�
�

��

�
�

��

�
�

��

�
�

��

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J

�
��

�
��

�
��

�
��

A
A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

�
��

�
��

�
��

�
��

L
L
L
L
LL

L
L
L
L
LL

L
L
L
L
LL

L
L
L
L
LL

!!!
!!!

!!!
!!!

B
B
B
B
B
BB

B
B
B
B
B
B
B

B
B
B
B
B
BB

B
B
B
B
B
B
B

Figure 1: Dataflow diagram for dimensionless Pease algorithm

x̂15

x̂14

x̂13

x̂12

x̂11

x̂10

x̂9

x̂8

x̂7

x̂6

x̂5

x̂4

x̂3

x̂2

x̂1

x̂0

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

�
�
�
�
��

�
�
�
�
��

l
ll

l
ll

�
�
��

�
�
��

T
T
T
T

T
T
T
T

,
,,,
,,

L
L
L
L
L
L

L
L
L
L
L
L

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

B
B
B
B
B
BB

B
B
B
B
B
BB

B
B
B
B
B
BB

B
B
B
B
B
BB

��

��

��

��

HH

HH

HH

HH

��

HH

�
�
�
�
��

�
�
�
�
�
��

B
B
B
B
BB

C
C
C
C
C
CC

J
J
J

@
@

�
�
�

�
�

�
�
�

�
�
�
�

J
J
J

A
A
A
A

�
�
�
�
�
��

C
C
C
C
C
CC

�
��

�
�
�
�
�
�
��

@
@D

D
D
D
D
D
D
DDJ

J
J

�
�
�
�

�
�
�

A
A
A
AHH

�
�
�
�
��

��

B
B
B
B
BB

Figure 2: Dataflow diagram for alternative FFT algorithm

3 Architectural Framework

In this section, we describe the architecture of our FFT
processor, and illustrate how the algorithms from the pre-
vious section can be mapped onto this architecture. The
proposed architecture shown in Figure 3 contains 3 main
units: the interface, the interconnection network, and the
processor elements (PEs.) The interface unit is used to
transfer parameters and data to/from the system. The
reconfigurable interconnection network provides the com-
munication between the PEs. Each PE has 3 main units:
a memory (M), a computation unit (CU), and an address
generator (AG). This design is similar to the Xputer pro-
posed in [?].

When used as an FFT processor, the data is dis-
tributed amongst the processor memories, the computa-
tion unit is used to generate twiddle factors and perform
butterfly operations, and the address generators calculate
the addresses of the two inputs to each butterfly opera-
tion. In order to map an FFT algorithm, represented as a
matrix factorization, onto this architecture, address gen-
erators must be configured from the permutations occur-
ing in the factorization, and the computation unit must
be configured to compute the appropriate twiddle fac-
tors. The initial permutation is incorporated into the
interface so that the data arrives in the appropriate or-
der. To simplify the address generators, we assume that

Interconection Network

Inter
face

M M

CU CUAG AG

6 6? ?

6 6? ?

M M

CU CUAG AG

6 6? ?

6 6? ?

-�

-�

. . .

Figure 3: The architecture

the FFT operates on a vector of size N = 2n, the number
of PEs is equal to M = 2m, and that the permutations
occuring in the FFT are tensor permutations. A tensor
permutation is a permutation obtained by permuting the
bits in the binary representation of the addresses [9]. Bit
reversal and stride permutations are examples of tensor
permutations.

The N elements of the input vector are distributed con-
secutively in segments of size N/M to the processor mem-
ories. A memory location containing data is assigned a
global n-bit address (bn−1bn−2 . . . b0), where the leading
m bits are the PE number and the trailing n − m bits
are a local offset. To conserve memory, the computation
is performed inplace. This requires a modification to the
factorization presented in the previous section, so that
each stage is of the form P (I ⊗ F2)TP−1. The conju-

gating permutation P determines the addresses for each
butterfly operation. Since all permutations are assumed
to be tensor permutations, the permuted addresses can
be generated by permuting the bits of a binary counter.

For example, the 16-point Pease algorithm is trans-
formed into the four stage factorization

L16
2 (I8 ⊗ F2)T4L16

8 · L16
4 (I8 ⊗ F2)T3L16

4 ·
L16

8 (I8 ⊗ F2)T2L16
2 · (I8 ⊗ F)2)T1Pd.

The addresses obtained for the 8 butterfly operations
(two consecutive data elements are used in a butterfly
operation) in each of the four stages are shown in Ta-
ble 2. Each stage shows the permuted address bits, and
all addresses are obtained by counting from 0 to 15.

Table 2: Butterfly addresses for the 16-bit Pease algorithm

Stage 0 Stage 1 Stage 2 Stage 3
b3b2b1b0 b2b1b0b3 b1b0b3b2 b0b3b2b1

0000->P0 0000->P0 0000->P0 0000->P0

0001->P0 0010->P0 0100->P0 1000->P0

0010->P1 0100->P1 1000->P1 0001->P1

0011->P1 0110->P1 1100->P1 1001->P1

0100->P2 1000->P2 0001->P2 0010->P2

0101->P2 1010->P2 0101->P2 1010->P2

0110->P3 1100->P3 1001->P3 0011->P3

0111->P3 1110->P3 1101->P3 1011->P3

1000->P0 0001->P0 0010->P0 0100->P0

1001->P0 0011->P0 0110->P0 1100->P0

1010->P1 0101->P1 1010->P1 0101->P1

1011->P1 0111->P1 1110->P1 1101->P1

1100->P2 1001->P2 0011->P2 0110->P2

1011->P2 1011->P2 0111->P2 1110->P2

1110->P3 1101->P3 1011->P3 0111->P3

1111->P3 1111->P3 1111->P3 1111->P3

Butterfly operations are assigned to PEs using a round
robin schedule. Assuming 4 PEs, Table 3 shows the ad-
dress sequences for each PE for the 16-bit Pease algo-
rithm. The twiddle factors needed for a butterfly are
determined in a manner similar to address calculation.

Table 3: Address sequences for 16-point Pease algorithm

PE Stage 0 Stage 1 Stage 2 Stage 3
0 0,1,8,9 0,2,1,3 0,4,2,6 0,8,4,12
1 2,3,10,11 4,6,5,7 8,12,10,14 1,9,5,13
2 4,5,12,13 8,10,9,11 1,5,3,7 2,10,6,14
3 6,7,14,15 12,14,11,15 9,13,7,15 3,11,7,15

4 Performance Model

In Section 2, it was shown that there are different FFT
algorithms with different dataflow patterns. Each algo-
rithm can be mapped onto the architectural framework
outlined in Section 3. It is not clear a priori which algo-
rithm should be used when selecting the ultimate design
for the FFT processor. Using the performance model,
a search, over a subset of possible FFT algorithms, was
performed in order to select the most efficient design.
The algorithm found using this search process substan-
tially reduces the traffic over the interconnection network
when compared to the Pease algorithm.The use of a per-
formance model, instead of complete simulation, allows
us to explore many different possible designs at an early
stage of the design process. The use of performance mod-
els early in the design process has been promoted in [10].

The performance model was implemented using
ADEPT [5], a performance modeling tool based on Petri-
Nets and implemented in VHDL. In the performance
model, data are represented by tokens containing infor-
mation that affects performance. The flow of the tokens
emulates the dataflow in the system. A token in our
system contains a pair of addresses corresponding to a
butterfly operation. The sequence of addresses are gen-
erated and mapped to PEs by a scheduler. The PE,
the memory (M) and the interconnection models have a
mechanism of passing the tokens that imitates the com-
putation steps including memory read, twiddle factor and
butterfly operations, and memory write. The operations
and the memory accesses are emulated as delays while
the address sequences dictate the flow of data. We use
the total simulation time (not the CPU time) reported
by the VHDL simulator as the performance cost.

The optimization problem is to find the FFT dataflow
with minimal running time. The set of dataflows consid-
ered are obtained from the Pease algorithm by multiply-
ing the permutations by tensor permutations of the form
P ⊗ I2. Any such permutations lead to a valid dataflow
and any valid dataflow can be obtained in such a way.
Since an exhaustive search is prohibative, the search was
limited to the case where P is a stride permutation. The
search was performed with a model using four proces-
sors with the number of data points ranging from 16 to
1024. Figure 4 compares the performance of the optimal
dataflow found with the Pease algorithm.

The addressing for the optimal algorithm for 16 points
is given in Table 4. The addresses were generated by
the sequence of bit permutations (b2b1b3b0), (b2b1b0b3),
(b2b0b1b3), (b0b1b3b2). Comparing this sequence of ad-
dresses to the Pease algorithm shows that the Pease al-
gorithm has 36 non-local memory accesses while the op-
timal algorithm only has 16. There is a pattern in the
optimal dataflow found by the search, which can be pa-

5 6 7 8 9 100

100

200

300

400

500

600

700

800

Address Size

Time (µs)

•: Pease formula

?: Optimal formula

• • •((((
•

!!!!

•

�
�

�
�

•

�
�
�
�
�
�
�
�

? ? ? ?
?

?

Figure 4: Comparison of the optimal and Pease algorithms

Table 4: Address sequences for optimal 16-point algorithm

PE Stage 0 Stage 1 Stage 2 Stage 3
0 0,1,2,3 0,2,1,3 0,4,1,5 0,8,2,10
1 4,5,6,7 4,6,5,7 2,6,3,7 4,12,6,14
2 8,9,10,11 8,10,9,11 8,12,9,13 1,9,3,11
3 12,13,14,15 12,14,11,15 10,14,11,15 5,13,7,15

rameterized by the number of processors and data points.
This dataflow has many interesting properties which sim-
plify its implementation: (1) all data access in the first
m stages is local and (2) in the remaining stages, half of
the data accessed by a processor is local and the other
half is exchanged with one other processor.

5 Implementation

In this section, we describe the implementation of a uni-
versal FFT processor on the WildforceTM [6] FPGA
board. The processor design is based on the optimal
dataflow found in the previous section. The board con-
sists of 5 Xilinx FPGA chips (XC4085XLA), with local
memories, connected via a configurable crossbar inter-
connect. The board communicates with a host using a
PCI bus. The architecture in Section 4, is mapped to the
board as follows. One processor, CPE0, along with its
FIFO is used for interface unit. The remaining proces-
sors implement four PEs each with a computation unit
and address generator. The crossbar is used for the in-
terconnection network.

Before the computation is performed the processor is
configured using parameters containing size and dimen-
sion information. The interface uses this information to
perform the initial permutation, Pd, and the remaining

PEs use the parameters to configure their address gener-
ators and the computation units.

After the board is configured, data is downloaded and
distributed to the memories of the PEs. Computation is
performed on single-precision complex data. The com-
putation is divided into 2 phases: “local” and “remote”.
During the local phase all data are in the local memory
modules. During each stage of the the remote phase,
half of data is available in local memory while the other
half must be obtained over the interconnect. Before each
remote stage the interconnect must be configured corre-
sponding to the permutation at that stage.

The address generator in each PE generates a sequence
of addresses. The controller uses the address to read the
data which is sent to the computation unit via a FIFO
while the address is put in a FIFO for the writing. The
computation unit includes the twiddle factor generator
and arithmetic units for performing butterfly operations.
The computation unit is implemented using pipelining so
that an output is ready every other clock cycle as long
as inputs are fed continuously. The implementation re-
quires one pipelined floating-point adder and one pipeline
floating-point multiplier. The output from the computa-
tion unit is written back to memory at the same address
stored in the FIFO.

Special properties of the permutations in the optimal
dataflow allow address generation to use the adder shown
in Figure 5. The base address (INT), and increment
(INC) are computed from the stage number and the num-
ber of points (see [1]).

ACC

20-bit ADDER

INT

INC
R

?

?

?

?

?

?

Figure 5: Adder used for generating address sequence

6 Summary and Future Work

In this paper we have presented a family of algorithms,
called dimensionless FFTs, for computing multidimen-
sional FFTs. We also introduced a parameterized family
of FFT processors and showed how to map algorithms
onto this hardware design. Finally, using a performance
model we were able to find the optimal FFT algorithm for
the architecture we considered. A prototype implementa-
tion of the optimal algorithm and resulting hardware de-
sign was carried out using FPGA and the resulting board

configuration was validated. Currently we are in the pro-
cess of benchmarking our implementation and comparing
it to other FFT processors. In the future we hope to ex-
tend this methodology to a larger class of algorithms and
processor designs.

References

[1] P. Kumhom, J. R. Johnson and P. Nagvajara, “De-
sign, optimization, and implementation of a univer-
sal FFT engine,” Tech. Rep. DU-MCS-00-01, Drexel
University, 2000, http://www.mcs.drexel.edu.

[2] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua,
V. Prasanna, and M. M. Veloso, “SPIRAL:
Portable Library of Optimized SP Algorithms,”
1998, http://www.ece.cmu.edu/∼spiral/.

[3] L. Auslander, J. R. Johnson and R. W. John-
son, “Dimensionless fast Fourier transforms,”
Tech. Rep. DU-MCS-97-01, Drexel University, 1997,
http://www.mcs.drexel.edu.

[4] C. Van Loan, Computational Framework for the Fast
Fourier Transform, SIAM, Philadelphia, PA, 1992.

[5] J. R. Johnson and R. W. Johnson, “Distributed
memory FFT algorithms and dataflow,” in Proc. of
1999 High Performance Embed Computing Confer-
ence (HPEC99), MIT Lincoln Lab, Cambridge, MA,
September 1999.

[6] “Unified modeling (UM) reference manual (ADEPT
Version A.1),” Tech. Rep. 960620.0, CSIS, Univer-
sity of Virginia, 1996.

[7] Annapolis Micro Systems, Inc., WILDFORCE Ref-
erence Manual Revision 3.4, 1999.

[8] J.R. Johnson, R.W. Johnson, D. Rodriguez, and
R. Tolimieri, “A methodology for designing, modify-
ing, and implementing fourier transform algorithms
on various architecture,” Circuit, Systems, and Sig-
nal Processing, vol. 9, no. 4, pp. 249–500, 1990.

[9] M. C. Pease, “An adaptation of the fast fourier
transform for parallel processing,” ACM, vol. 15,
no. 2, pp. 252–264, April 1968.

[10] R.W. Hartenstein, A.G. Hirschbiel, and M. Weber,
“Xputer-an open family of non von neuman archi-
tecture,” Tech. Rep. 195/89, University of Kaiser-
slautern, 1989.

[11] “RASSP Hardware/Software Codesign Application
Note,” http://www.atl.external.lmco.com.

